Wide Angle Diffusers ## PoG Diffuser 115x90 #### **Features and Advantages** The PoG (Polymer on Glass) diffuser combines a micro-structured polymer layer on a glass substrate, offering wide wavelength coverage (450–2000 nm), high transmission (>90%), customizable divergence angles (10°–130°) with various beam shapes, and excellent thermal stability (–40 °C to 125 °C, reflow soldering up to 260 °C), making it a cost-effective, reliable, and scalable solution for VCSEL-based applications such as 3D sensing, LiDAR, incabin monitoring, robotics, and machine vision. #### **Product Specifications** | Product Code | | 120206000558 (1) | |--|------|-------------------| | Specification Data | Unit | | | Typical FOI Angle (FWHM) Horizontal (2)(3) | 0 | 116 | | Typical FOI Angle (FWHM) Vertical (2)(3) | 0 | 88 | | Material | | Epoxy on glass | | Length (L) | mm | 3.1 ± 0.05 | | Width (W) | mm | 3.1 ± 0.05 | | Thickness (T) | mm | 0.365 ± 0.025 | | Clear Aperture (Al x Aw) | mm² | 1.55 x 1.55 | | Design Wavelength (4) | nm | 940nm | | AR Coating (5) | nm | uncoated | | Transmission (6) | % | 90 | ⁽¹⁾ Example for customization — design, dimensions and coating on request. ### **Product Drawing (mm)** $^{^{(2)}\,\}mbox{Angle}$ at 50% level normalized to the centroid. Based on radiant intensity. ⁽³⁾ Typical VCSEL under typical driving conditions. Different VCSEL sources or different driving conditions could lead into different FOI values. ⁽⁴⁾ Optimization design based on VCSEL@940nm. $^{^{\}rm (5)}$ Optional for customized AR coating on glass surface. $^{^{(6)}}$ Transmission is 90% for uncoated, and will be 94% with AR coating on glass surface. Radiant Intensity Distribution Pattern (Left) and Radiant Intensity Output Profile (Right) Irradiance Distribution Pattern (Left) and Irradiance Output Profile (Right) $[\]ensuremath{^{(7)}}$ Simulation based on measurements of a typical module product.