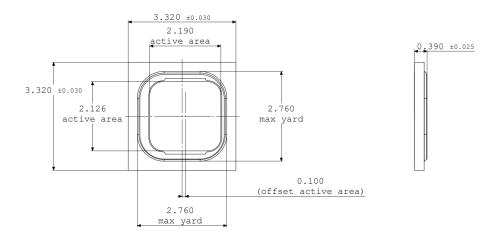


# **Wide Angle Diffusers**

## PoG Diffuser 125x110



#### **Features and Advantages**


The PoG (Polymer on Glass) diffuser combines a micro-structured polymer layer on a glass substrate, offering wide wavelength coverage (450–2000 nm), high transmission (>90%), customizable divergence angles (10°–130°) with various beam shapes, and excellent thermal stability (–40 °C to 125 °C, reflow soldering up to 260 °C), making it a cost-effective, reliable, and scalable solution for VCSEL-based applications such as 3D sensing, LiDAR, incabin monitoring, robotics, and machine vision.

#### **Product Specifications**

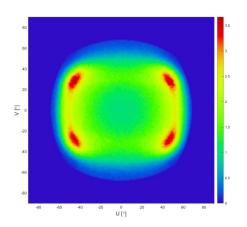
| Product Code                               |      | 120206000557 (1) |
|--------------------------------------------|------|------------------|
| Specification Data                         | Unit |                  |
| Typical FOI Angle (FWHM) Horizontal (2)(3) | 0    | 128              |
| Typical FOI Angle (FWHM) Vertical (2)(3)   | 0    | 112              |
| Material                                   |      | Epoxy on glass   |
| Length (L)                                 | mm   | $3.32 \pm 0.03$  |
| Width (W)                                  | mm   | $3.32 \pm 0.03$  |
| Thickness (T)                              | mm   | $0.39 \pm 0.025$ |
| Clear Aperture (Al x Aw)                   | mm²  | 2.190 x 2.126    |
| Design Wavelength (4)                      | nm   | 940nm / 850nm    |
| AR Coating (5)                             | nm   | uncoated         |
| Transmission (6)                           | %    | 90               |

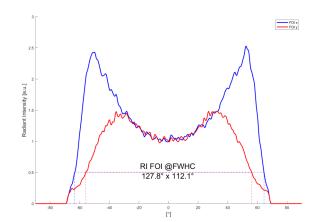
<sup>(1)</sup> Example for customization — design, dimensions and coating on request.

### **Product Drawing (mm)**

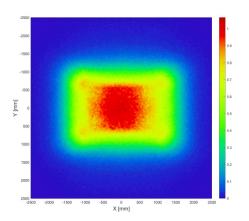


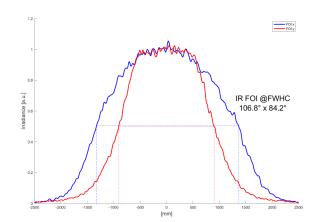
 $<sup>^{(2)}</sup>$  Angle at 50% level normalized to the centroid. Based on radiant intensity.


<sup>(3)</sup> Typical VCSEL under typical driving conditions. Different VCSEL sources or different driving conditions could lead into different FOI values.


 $<sup>^{\</sup>text{(4)}}$  Optimization design based on VCSEL@940nm, can also be used for 850nm.

 $<sup>^{\</sup>rm (5)}$  Optional for customized AR coating on glass surface.


<sup>(6)</sup> Transmission is 90% for uncoated, and will be 94% with AR coating on glass surface.








Radiant Intensity Distribution Pattern (Left) and Radiant Intensity Output Profile (Right)





Irradiance Distribution Pattern (Left) and Irradiance Output Profile (Right)

 $<sup>\</sup>ensuremath{^{(7)}}$  Simulation based on measurements of a typical module product.