男人撕开奶罩揉吮奶头视频丨对白脏话肉麻粗话av丨亚洲中文字幕无码中字丨国产偷国产偷亚洲高清app丨人妻在线无码一区二区三区

新聞活動


    
首頁新聞活動 新聞
返回

技術分享 | 通過高功率、低SMILE半導體激光垂直疊陣更好地實現熔覆工藝

發布日期:2021-02-06

本文原發表于《Laser Focus World》英文版2021年1月刊。

摘要:

半導體激光器因其高功率和高可靠性的特點,已被廣泛應用于表面處理工藝。長期以來,人們一直認為高功率半導體激光器由于近場非線性效應(SMILE)造成光束質量較差,不適合用于激光熔覆。降低SMILE效應的兩種傳統方法是:1. 用銦界面材料封裝半導體激光器,以減少熱誘導應力,從而降低SMILE;2. 對于每一個巴條,使用兩個獨立的FAC透鏡來做準直,也可以降低SMILE。這兩種方法都有各自的局限性:銦封裝半導體激光器由于銦材料的熱疲勞、熱遷移和電子遷移的緣故,可靠性相對較低;而用兩個FAC透鏡進行準直,對于某些應用來說,光學設計過于復雜。 通過DMCC的特殊封裝結構設計,炬光科技實現了1 μm的低SMILE值,81%的良品率和CW 200W/bar的可靠輸出功率,并分別形成了線光斑產品(6KW Activation Line)和矩形光斑產品(6KW DLight)。前者可以形成在285mm x 0.55mm的線型光斑,均勻度為86%。后者可形成14mm x 2mm的矩形光斑,均勻度超過80%。

High-power, low-SMILE vertical stack diode laser bars enable better laser cladding

A low near-field nonlinearity (low-SMILE), 32-bar diode stack produces a 6 kW uniform flat-top beam for cladding applications. WEIYI GU and LEI CAI FOCUSLIGHT TECHNOLOGIES INC. High-power diode lasers play a major role in materials processing. Compared to conventional carbon dioxide (CO2) lasers, high-power direct-diode laser sources have great advantages, such as high efficiency, low cost, wavelength versatility, and high reliability. High-power diode lasers, with a 9xx nm wavelength much shorter than that of CO2 lasers, increases the absorption of the metal surface and improves the melting efficiency.1 However, the large SMILE effect, of which the emitters are vertically displaced in a laser diode bar, causes poor output beam quality.2 Laser diode array bowing in the fast axis increases the geometrical line width of the output line when creating a line by collimating and focusing an emitting light from a laser array in the fast axis.3 The poor output beam quality of direct diode lasers is a large obstacle in industrial applications (see Fig. 1).4, 5 微信圖片_20210209230933.jpg FIGURE 1. Laser beam uniformity affects lapping in the cladding process. As reported here, a symmetrical structure was designed by bonding two submounts on the top and bottom of the heatsink to reduce the SMILE effect by balancing the packaging-induced stress. The 95% measured SMILE value in volume production was less than 2 μm. Low-SMILE vertical stacks made of 32 laser bars, each bonded on a microchannel cooler (MCC), were designed and characterized. A 2 × 20 mm2 rectangular beam of 6 kW continuous-wave (CW) output power with a beam uniformity of 90% was demonstrated. This kind of rectangular high-power laser beam from low-SMILE laser bars is widely used in laser cladding applications. By adding cladding material (composite metal powder) on the surface of the metal substrate, laser cladding uses a high-energy-density and high-uniformity laser beam to melt cladding material together with the metal substrate surface to form a liquid metal molten pool, which is naturally cooled and solidified to form a metallurgically bonded material cladding layer on the substrate surface. This new material cladding layer can significantly improve the wear resistance, corrosion resistance, heat resistance, oxidation resistance, and electrical properties of the substrate material surface to achieve the purpose of surface modification or repair, meet the specific performance requirements of the material surface, and save materials cost. Laser cladding process efficiency is greatly affected by the uniformity of the laser beam (including the SMILE of the laser source). Uniform laser beam energy distribution can lead to a good processing pool. Given a standard-thickness cladding layer, a high-uniformity laser beam can achieve smooth surface cladding through a lower amount of overlap. However, when using a laser beam with high SMILE, more overlaps are needed to make up for cladding layer thickness differences caused by nonuniform laser beam energy.

Low-SMILE laser bar based on DMCC

The traditional laser device based on a MCC is built with a laser bar bonded on a submount, such as copper/tungsten (CuW), and then on a MCC with a hard solder like gold/tin (AuSn), as shown in Figure 2a (called HMCC). Due to the coefficient of thermal expansion (CTE) mismatch between the laser bar (typical GaAs with 6.5 ppm/K) and MCC (typical copper with 16.5 ppm/K), a CuW submount with a CTE closely matched to that of a laser bar is used to minimize the packaging-induced stress on the laser bar after bonding.6 During cooldown from 287°C (AuSn melting temperature) to 25°C (room temperature), copper shrinks more than CuW because the CTE of copper is larger than that of CuW, resulting in a bowed laser bar/CuW/MCC for an asymmetrical structure (see Fig. 2b). Normally, the SMILE value of HMCC is almost 10–15 μm; the simulation results using finite element analysis and the experimental results will be shown later. 微信圖片_20210209230944.png FIGURE 2. Schematic of a laser bar bonded on a CuW carrier sitting on an MCC heatsink with AuSn solders before bonding (a) and after bonding (b). Compared to the HMCC, the SMILE value of a 1 cm bar is dramatically reduced by bonding another CuW submount below a HMCC to form a nearly symmetrical structure to balance the packaging-induced stress forced on the top and bottom of MCC, as shown in Figure 3 (called DMCC).3, 7 In this way, both the top and bottom sides of a MCC shrink at the same percentage during cooldown, keeping the packaging-induced stress forced on the top and bottom of a MCC in balance; this results in a smaller deformation of the MCC and minimizes the SMILE value of the 1 cm bar. Compared to the HMCC, the SMILE value of the DMCC is reduced from 10 to 15 μm to less than 2 μm. Figures 4 and 5 show the simulation results and the measured SMILE values of 1 cm bars based on HMCC and DMCC. 微信圖片_20210209230951.png FIGURE 3. Schematic of DMCC in which two submounts are bonded on the top and bottom of a MCC with AuSn solders. 微信圖片_20210209230956.png FIGURE 4. Simulated SMILE shape of a 1 cm laser bar bonded on HMCC and DMCC.7 微信圖片_20210209231002.png FIGURE 5. The measured SMILE shape and value of a 1 cm laser bar, each bonded on HMCC (12 μm) and DMCC (1 μm).6, 7

Vertical Stack with 32-bar DMCCs

To get a higher power, a vertical stack of 32 DMCCs was used to get the 6 kW output power at 200 A injection current. Test results for the 32-bar vertical stack are shown in Figure 6. A 2 × 20 mm2 rectangular beam was built with a 32-bar vertical stack (SMILE <2 μm) to produce 6 kW CW mode output power with a beam uniformity of more than 90% (see Fig. 7). The simulated intensity profile of the 32-bar vertical stack in the fast and slow axes are shown in Figures 8a and 8b, respectively. A 2 × 20 mm2 rectangular spot has many functions in materials processing, such as high-throughput scanning along the fast axis, due to the long edge of the spot. A flat-top spot guarantees the uniformity of the treated surface and is also perfect for obtaining a smooth brazing seam because the spot is narrow along the fast-axis direction. 微信圖片_20210209231641.pngFIGURE 6. Light-current-voltage (LIV) testing results for a 32-bar vertical stack based on DMCCs. 微信圖片_20210209231645.png FIGURE 7. A rectangular-beam system. 微信圖片_20210209231650.png微信圖片_20210209231655.png FIGURE 8. Simulated intensity profile of a 32-bar vertical stack in the fast axis (a) and the slow axis (b). Using a low-SMILE DMCC packaging structure, the beam profile of a rectangular spot laser can be greatly improved, including the uniformity of beam length, the shape of the beam, and so on. Figure 9 shows laser beam images of industrial stacked arrays produced by high-SMILE DMCCs (average SMILE values from 2.8 to 3 μm) and low-SMILE DMCCs (average SMILE value from 0.7 to 1 μm). It can be clearly seen that after the fast-axis collimation of the high-SMILE DMCC vertical stack, laser beams from adjacent bars at the 30 cm distance will not be parallel or even be crossed (see Fig. 9a). However, when a low-SMILE DMCC vertical stack is used, the laser beams of the adjacent bars show good parallelism at the 30 cm distance after fast-axis collimation (see Fig. 9b). 微信圖片_20210209231659.jpg FIGURE 9. Laser images at 30 cm from high-SMILE DMCC vertical stack (a) and low-SMILE DMCC vertical stack (b) collimated by FAC lenses. Using these two different laser stacks and passing through the same optical system to form a 2 × 20 mm2 laser beam, we can also clearly see the influence of SMILE on the laser beam, as shown in Figures 10a and 10b, respectively. These indicate the laser beam state when the industrial stacked array produced by high-SMILE DMCCs or low-SMILE DMCCs reaches a 2 × 20 mm2 laser beam through the optical system. The uniformity of the laser beam in the length direction of high-SMILE DMCCs is only 83.7%, while that of low-SMILE DMCCs is 93.5%. Since no slow-axis homogenizer is used, the uniformity could also be influenced by the intensity nonuniformity of emitters with a bar and the current dependent near field of each emitter. The high-SMILE DMCC products have a negative impact on the final beam uniformity and energy distribution, and may affect the laser application process. 微信圖片_20210209231704.jpg FIGURE 10. Final output laser beam produced by a high-SMILE DMCC vertical stack (a) and a low-SMILE DMCC vertical stack (b).

REFERENCES

1. H. Zhu et al., Opt. Laser Technol., 76, 101–105 (2016). 2. H. Zhang et al., Appl. Opt., 57, 28, 8407–8411 (2018). 3. C. Zah et al., Proc. HPD 2017, 9–10 (2017); doi:10.1109/hpd.2017.8261079. 4. L. Li, Opt. Lasers Eng., 34, 4–6, 231–253 (2000). 5. G. C. Rodrigues et al., Opt. Lasers Eng., 61, 31–38 (2014). 6. J. L. Hostetler et al., Proc. SPIE, 6456, 645602 (Feb. 2007). 7. H. Zhang et al., Opt. Eng., 57, 3, 036115 (2018).

Meet the authors

Weiyi Gu is Senior Manager of Laser Systems and Lei Cai is Senior Optical Design Engineer, both at Focuslight Technologies, Xi’an, China; e-mail: guwy@focuslight.com; www.ruidelawyer.com.

About Focuslight:

Founded in 2007, Focuslight is a fast growing high-tech company committed to research, development and manufacturing of high power diode lasers. Headquartered in Xi’an, Shaanxi, China, Focuslight provides its products to a variety of different customers like OEMs, ODMs and system integrators in markets worldwide. With its extensive engineering capabilities from thermal, optical and mechanical design to die bonding, FAC assembling and fiber coupling to system integration, Focuslight is dedicated to providing customers with well-matched all-round solutions according to their actual needs. For more information, please visit www.ruidelawyer.com.
上一篇:領導關懷 | 陜西省委常委、西安市委書記王浩一行來炬光科技走訪慰問 下一篇: 領導關懷 | 陜西省委副書記胡衡華一行來炬光科技考察調研
隱私偏好中心
為了使站點正常運行并為訪問者提供無縫和定制化體驗,Cookie 和其他類似技術(“Cookie”)非常重要。 Zoom 通過 Cookie 支持您使用我們的站點。 我們還通過 Cookie 允許您個性化定制您使用我們網站的方式,為您提供增強的功能,并不斷提高我們網站的表現。 如果您已啟用下面的定向 Cookie,我們可能會將根據您的賬戶類型或登錄狀態允許第三方廣告商使用他們在我們的站點上所設置的 Cookie 在我們的網站或產品上向您顯示與您相關的廣告內容。
您可以接受或拒絕除“絕對必要 Cookie”之外的所有 Cookie,或者定制下面的 Cookie 設置。 您可以隨時更改您的 Cookie 設置。 部分“絕對必要性 Cookie”可能會將個人數據傳送到美國。 要了解有關 Zoom 如何處理個人數據的更多信息,請訪問我們的隱私聲明
將下面標有“定向”的按鈕切換為關閉狀態之后,加利福尼亞州的居民可以行使“選擇拒絕出售個人信息”的權利。
接受Cookie
管理許可偏好
  • +目標定位
    我們的廣告合作伙伴可以通過我們的站點設置這些 Cookie。 這些 Cookie 可供廣告合作伙伴公司根據自有策略跟蹤您使用我們網站的情況,并可將相應信息與其他信息相結合,然后在我們的站點? ??其他站點上向您顯示相關廣告。 如果您不允許使用這些 Cookie,您將不會在 Zoom 網站或產品上看到個性化廣告。
  • +功能
    這些 Cookie 支持網站提供增強型功能和定制功能。 Cookie 可能由我們或由在我們的網頁上添加服務的第三方供應商設置。 如果您不允許這些 Cookie,那么部分或所有的這些服務可能無法正常運行。
  • +性能
    這些 Cookie 使我們能夠計算訪問量和流量來源,以便我們評估和改進我們的網站性能。 這些 Cookie 可幫助我們了解哪些頁面最受歡迎,哪些頁面最不受歡迎,并了解訪問者在網站上的瀏覽方式。 如果您不允許這些 Cookie,我們將不知道您何時訪問過我們的網站,也無法監測網站性能。
  • +絕對必要

    始終處于活動狀態

    這些 Cookie 對于網站的運行是絕對必要的,且無法在我們的系統中關閉。 通常,只有在您做出近乎服務請求的行為(例如,設置您的隱私偏好、登錄或填寫表單)時才會設置這些 Cookie。 您可以將瀏覽器設置為阻止或提醒您注意這些 Cookie,但網站的某些部分可能會無法運行。
確認我的選擇
主站蜘蛛池模板: 国产又色又爽又刺激在线观看| 久久人人97超碰国产亚洲人| 亚洲国产欧美在线人成大黄瓜 | 老太脱裤子让老头玩xxxxx| 一本久久a久久精品综合| 免费看成人午夜福利专区| 国产精品久久国产精麻豆99网站| 浓毛欧美老妇乱子伦视频| 国产在线无码一区二区三区视频| 极品少妇hdxx麻豆hdxx| 四虎永久在线高清国产精品| 又爽又黄又无遮挡网站| 小嫩妇好紧好爽18禁视频| 乱中年女人伦| 亚洲日韩久热中文字幕| 体验区试看120秒啪啪免费| 久久人人97超碰国产公开| a片免费视频在线观看| 香蕉免费一区二区三区| 国产视频亚洲精品视频| 亚洲日韩精品国产一区二区三区| 人妻无码中字在线a| 上司的丰满人妻中文字幕| 精品人伦一区二区三区潘金莲 | 2019午夜福利不卡片在线| 国产精品三级一区二区| 爽爽精品dvd蜜桃成熟时电影院| 亚洲精品国产av成拍色拍个| 午夜性色吃奶添下面69影院| 波多野结衣av在线观看| 日出水了特别黄的视频| 国产麻豆精品av在线观看| 国产成人亚洲综合网站小说| 国产精品免费久久久久电影| 精品无码人妻一区二区三区不卡| 免费国产午夜理论片不卡| 亚洲最大的熟女水蜜桃av网站| 亚洲午夜成人片| 少妇厨房愉情理伦bd在线观看| 蜜芽av无码精品国产午夜| 亚洲精品午夜国产va久久成人|